24 research outputs found

    The missing sinks: slip localization in faults, damage zones, and the seismic energy budget

    Get PDF
    No abstract available

    Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults

    Get PDF
    We determined the structure and permeability variations of a 4 km-long normal fault by integrating surface mapping with data from five boreholes drilled through the fault (borehole to tens of meters scale). The Big Hole fault outcrops in the Jurassic Navajo Sandstone, central Utah. A total of 363.2 m of oriented drill core was recovered at two sites where fault displacement is 8 and 3-5 m. The main fault core is a narrow zone of intensely comminuted grains that is a maximum of 30 cm thick and is composed of low-porosity amalgamated deformation bands that have slip surfaces on one or both sides. Probe permeameter measurements showed a permeability decline from greater than 2000 to less than 0.1 md as the fault is approached. Whole-core analyses showed that fault core permeability is less than I md and individual deformation band permeability is about 1 md. Using these data, we calculated the bulk permeability of the fault zone. Calculated transverse permeability over length scales of 5-10 m is 30-40 md, approximately 1-4% the value of the host rock. An inverse power mean calculation (representing a fault array with complex geometry) yielded total fault-zone permeabilities of 7-57 md. The bulk fault-zone permeability is most sensitive to variations in fault core thickness, which exhibits the greatest variability of the fault components

    How thick is a fault? Fault displacement-thickness scaling revisited

    Get PDF
    No abstract available

    Impact of mechanical heterogeneity on joint density in a welded ignimbrite

    Get PDF
    Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer’s compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous

    The geometry and thickness of deformation-band fault core and its influence on sealing characteristics of deformation-band fault zones

    Get PDF
    Deformation-band faults in high-porosity reservoir sandstones commonly contain a fault core of intensely crushed rock surrounding the main slip surfaces. The fault core has a substantially reduced porosity and permeability with respect to both the host rock and individual deformation bands. Although fault core thickness is a large uncertainty in calculations of transmissibility multipliers used to represent faults in single-phase reservoir flow models, few data exist on fault core thickness in deformation-band fault zones. To provide accurate estimates of deformation-band fault petrophysical properties, we measured fault core thickness at six sites (each 4–15 m [13–49 ft] along strike) along the Big Hole fault in the Navajo Sandstone, central Utah. These data show that the thickness is highly variable and does not correlate with either the amount of slip or the number of slip surfaces. The thickness of the fault core is likely to be dependent on local growth processes, specifically the linkage of fault segments. This suggests that correlations of fault permeability with throw may not apply to deformation-band faults. Simple calculations of two-phase flowproperties based on measured porosity and permeability values suggest that deformation-band faults containing fault core are likely barriers to two-phase flow.More data on the variability of fault core thickness and its petrophysical properties need to be collected to characterize population statistics for models of deformation-band fault fluid-flow properties

    Analysis of CO<sub>2</sub> leakage through "low-permeability" faults from natural reservoirs in the Colorado Plateau, southern Utah

    Get PDF
    The numerous CO2 reservoirs in the Colorado Plateau region of the United States are natural analogues for potential geologic CO2 sequestration repositories. To better understand the risk of leakage from reservoirs used for long-term underground CO2 storage, we examine evidence for CO2 migration along two normal faults from a reservoir in east-central Utah. CO2 -charged springs, geysers, and a hydrocarbon seep are localised along these faults. These include natural springs that have been active for long periods of time, and springs that were induced by recent drilling. The CO2 -charged spring waters have deposited travertine mounds and carbonate veins. The faults cut siltstones, shales, and sandstones and the fault rocks are fine-grained, clay-rich gouge, generally thought to be barriers to fluid flow. The geologic and geochemical data are consistent with these faults being conduits for CO2 to the surface. Consequently, the injection of CO2 into faulted geologic reservoirs, including faults with clay gouge, must be carefully designed and monitored to avoid slow seepage or fast rupture to the biosphere

    Fault fictions : systematic biases in the conceptualization of fault zones

    Get PDF
    Mental models (i.e. a human’s internal representation of the real world) have an important role in the way a human understands and reasons about uncertainties, explores potential options, and makes decisions. However, they are susceptible to biases. Issues associated with mental models have not yet received much attention in geosciences, yet systematic biases can affect the scientific process of any geological investigation; from the inception of how the problem is viewed, through selection of appropriate hypotheses and data collection/processing methods, to the conceptualisation and communication of results. This article draws on findings from cognitive science and system dynamics, with knowledge and experiences of field geology, to consider the limitations and biases presented by mental models in geoscience, and their effect on predictions of the physical properties of faults in particular. We identify a number of biases specific to geological investigations and propose strategies for debiasing. Doing so will enhance how multiple data sources can be brought together, and minimise controllable geological uncertainty to develop more robust geological models. Critically, we argue that there is a need for standardised procedures that guard against biases, permitting data from multiple studies to be combined and communication of assumptions to be made. While we use faults to illustrate potential biases in mental models and the implications of these biases, our findings can be applied across the geoscience discipline

    A systematic study of element mobilisation from gas shales during hydraulic fracturing

    Get PDF
    The large quantities of wastewater produced throughout the lifetime of a shale gas well can contain heavy metals and other regulated potentially toxic elements. These can be mobilised from the target formation by some of the additives present in the hydraulic fracturing fluids (HFF). High levels of inorganic geogenic chemicals may pose a hazard to the environment through accidental releases such as spills of untreated wastewater. The concentration of mobilised elements and the hazard they pose is uncertain and is likely dependant on the chemical agents used in HFF, groundwater composition and the trace element content of targeted shale gas formation. Laboratory protocols were developed to investigate the release of inorganic contaminants of potential concern (e.g. As, Co, Cu, Pb, Se) from shale gas formations around the world. Powdered rock samples were leached for up to 360 hours at elevated temperature (80°C) and a range of pressures (1-200 bar), with synthetic HFF and synthetic groundwater (SGW). Elemental concentrations released into solution were generally much higher in the HFF leachates than in the SGW treatments, indicating that the chemical additives in the HFF influenced element mobilisation. SEM and EDX images show substantial mineral etching and precipitation of secondary phases on shale chips leached for 360 hours with HFF at 80°C and ~180 bar when compared to the SGW experiment. Time-series data also show evidence of mineral dissolution and subsequent precipitation of new phases, which resulted in sequestration of a number of trace elements that were initially mobilised into the solution. We also observed that the carbonate content of the unreacted shale sample had a strong control on the final pH of the HFF leachates. This study shows that additives can enhance the release of geogenic chemicals, but also that subsequent precipitation within the fracture system could limit ultimate release to surface

    Role of Subsurface Geo-Energy Pilot and Demonstration Sites in Delivering Net Zero

    Get PDF
    Recent research suggests that the effects of climate change are already tangible, making the requirement for net zero more pressing than ever. New emissions targets have been announced in April 2021 by various governments, including by the United Kingdom, United States, and China, prior to the Conference of the Parties (COP26) in Glasgow. Part of the solution for net zero will be geo-energy technologies in the subsurface, these include: mine water geothermal, aquifer thermal energy storage (ATES), enhanced geothermal systems and other thermal storage options, compressed air energy storage (CAES), and carbon dioxide capture and storage (CCS) including bioenergy CCS (BECCS). Subsurface net zero technologies have been studied by geologists at laboratory scale and with models, but also require testing at greater-than laboratory scale and in representative conditions not reproducible in laboratories and models. Test, pilot and demonstration facilities aid rock characterisation process understanding and up-scaling, and thereby provide a bridge between laboratory testing and computer modelling and full-scale operation. Examples of test sites that have progressed technology development include the Otway International Test Centre (Australia, CCS) and the Äspö Hard Rock Laboratory (Sweden, geological radioactive waste disposal). These sites have provided scale up for key research questions allowing science issues of relevance to regulation, licencing and permitting to be examined at scale in controlled environments. Successful operations at such sites allow research to be seen at first hand to inform the public, regulators, supply chain companies and investors that such technologies can work safely and economically. A Geological Society conference on the “Role of subsurface research labs in delivering net zero” in February 2021 considered the value of test sites and gaps in their capability. Gaps were identified in two areas: 1) test facilities to aid the design of low cost, high resolution, unobtrusive seismic and other monitoring for a seismically noisy urban environment with a sensitive human population, for example for ATES in urban areas; and 2) a dedicated through-fault zone test site to understand fault transmissivity and reactivation. Conference participants also recommended investment and development in test sites, shared facilities and risk, joint strategies, data interoperability and international collaboration

    What do you think this is? "Conceptual uncertainty" in geoscience interpretation

    No full text
    Interpretations of seismic images are used to analyze sub-surface geology and form the basis for many exploration and extraction decisions, but the uncertainty that arises from human bias in seismic data interpretation has not previously been quantified. All geological data sets are spatially limited and have limited resolution. Geoscientists who interpret such data sets must, therefore, rely upon their previous experience and apply a limited set of geological concepts. We have documented the range of interpretations to a single data set, and in doing so have quantified the �conceptual uncertainty� inherent in seismic interpretation. In this experiment, 412 interpretations of a synthetic seismic image were analyzed. Only 21% of the participants interpreted the �correct� tectonic setting of the original model, and only 23% highlighted the three main fault strands in the image. These results illustrate that conceptual uncertainty exists, which in turn explains the large range of interpretations that can result from a single data set. We consider the role of prior knowledge in biasing individuals in their interpretation of the synthetic seismic section, and our results demonstrate that conceptual uncertainty has a critical influence on resource exploration and other areas of geoscience. Practices should be developed to minimize the effects of conceptual uncertainty, and it should be accounted for in risk analysis
    corecore